

Gainesville State College

Fifteenth Annual Mathematics Tournament

April 4, 2009

Solutions for the Afternoon Team Competition

Round 1

There are 6 terms that repeat in the sequence (5, 0, 0, 0, -5, -5). When you divide 3997 by 6, the quotient is 666 with a remainder of 1. So the 1^{st} term in the sequence is 5.

Round 2

For a regular n-sided polygon, the external angle is $\frac{2\pi}{n}$.

The shortest diagonal will be (as seen in figure) obtained if a triangle is formed.

Thus, the shortest diagonal is the base of an isosceles triangle with external angle $\frac{2\pi}{n}$.

The base angles must be $\frac{1}{2} \left(\frac{2\pi}{n} \right) = \frac{\pi}{n}$.

Therefore, the base is $2\cos\frac{\pi}{n}$.

If you need this document in another format, please email minsu.kim@ung.edu or call 678-717-3546.

Round 3

On each side there are 19×19 small cubes with exactly one side painted, so the total of these is $6 \times 19 \times 19 = 2,166$.

Then, on each edge we have 19 cubes that have two sides painted for a total of $12 \times 19 = 228$ cubes with two sides painted.

Finally, on each corner we have a cube with three sides painted for a total of 8 of these.

The total is 2,166 + 228 + 8 = 2,402.

Round 4

$$\theta = \frac{6}{16}$$

Round 8

From the diagram, vertex E must lie on the line y = x and $y = -\frac{b}{a}x + b$ (as a point on $y = -\frac{b}{a}x + b$). So it has coordinates $\left(\frac{ab}{a+b}, \frac{ab}{a+b}\right)$ found by solving these equations simultaneously.

By symmetry, we must have coordinates for vertex F as $\left(\frac{a^2}{a+b}, \frac{b^2}{a+b}\right)$.

Applying the distance formula, we get

$$d(EF) = \frac{\sqrt{a^{2}(a-b)^{2} + b^{2}(b-a)^{2}}}{a+b} \qquad \frac{\sqrt{()^{2}()}}{\sqrt{()^{2}()}}$$